研究生导师介绍

姓名: 郭建光	性别: 男	院系: 化学与化工学院
行政职务: 无	专业技术职称: 讲师	
毕业院校:湖南大学	毕业专业: 008500 材料科学与工程	毕业时间: 2020.07
最后学历: 博士研究生	最后学位:工学博士	
办公电话:	Email:jianguangguo@wust.edu.cn	

个人简介(主要研究方向、个人成果等总体介绍)

主要研究方向:

- 1. 中间相沥青分子结构与性能调控;
- 2. 沥青基炭纤维微观结构调控及其性能洋酒;
- 3. 沥青基炭材料制备及其性能研究

总体介绍:

本人长期从事"中间相沥青及其炭纤维"工程化制备及其研发工作。参与了"军工一条 龙"项目、总装备部重点研发计划、国家自然科学基金重点联合基金、校企重点研发和工程 化项目,针对高性能中间相沥青展开了大量的基础和工程化研究工作,具备扎实的专业知识 素养和工程化背景。

在国内外核心期刊上发表学术论文情况

论文题目	刊物名称	刊物国家	收录 情况	卷期	排名
Spinnable mesophase pitch prepared via Co-carbonization of Fluid Catalytic Cracking Decant Oil and Synthetic Naphthalene Pitch	Energy & Fuels	国外	scı	34(2): 2566-2573	第一
Impact of Microstructure on the Electrochemical Performance of Round-shaped Pitch-based Graphite Fibers	Materials	国内	SCI	13(8),1933	第二
Molecular structure control in mesophase pitch via Co-carbonization of coal tar pitch and petroleum pitch for production of carbon fibers with both high mechanical properties and thermal conductivity	Energy & Fuels	国外	SCI	34(5): 6474-6482	第一
催化聚合工艺对萘沥青性能和结构的影响研究	湖南大学学报	国内	EI	44 (6) : 81-86	第二
三维高导热炭/炭复合材料的制备、结构及性能研究	新型碳材料	国内	SCI	5: 567-575	第二
Microstructure and performance of carbonization products of component	Journal of Saudi	国	SCI	22(2):316-321	第

from soft coal pitch	Chemical Society 外	四

完成及承担科研项目

项目名称及下达编号	项目 类别	项目来源	起讫时间	科研经费(万元)	本人承担 任务
××××制备技术研究		国防项目	2015. 01 [~] 2015. 12	525. 00	参与
高性能炭纤维增强树脂复合材料汽车零部件低成本制造、服 役性能与材料结构调控研究		国家自然科学基金项目	2019. 01 [~] 2021. 12	210. 00	骨干
煤系通用级沥青基碳纤维关键技术与装备研发		企、事业单位委 托项目	2018. 09 ² 2021. 09	1408. 87	骨干
新进教师科研启动经费		学校自选项目	2020. 09 ² 2023. 09	6.00	主持
高性能炭纤维用中间相沥青制备及其性能调控研究		学校自选项目	2021. 01 [~] 2022. 12	2.00	主持

成果获奖情况

成果名称	颁奖部门	奖项	等级	完成日期	证书号	排名
一种可纺中间相沥青的制备方法	校厅	其他	发明专利	2018-03-20	CN 2018102333426	第二
一种超高纯合成中间相沥青制备方法	校厅	其他	发明专利	2016-10-21	CN 2015106528557	第三
一种催化合成中间相沥青制备方法	校厅	其他	发明专利	2020-10-21	CN 2016109174972	第三
一种水基石墨润滑脱模剂	校厅	其他	发明专利	2015-01-09	ZL201510010219.4	第二